高考数学必考知识点

时间:2023-10-17 16:10:32 常识 我要投稿

  高考数学必考知识点,我们在高中阶段学习过的数学知识点其实有很多,数学复习需要多花功夫,学生在复习时,一定要重视自我探究、自我思考,以下看看高考数学必考知识点。

  高考数学必考知识点1

  1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a-边长,S=6a2,V=a3

  4、长方体

  a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱

  S-底面积h-高V=Sh

  6、棱锥

  S-底面积h-高V=Sh/3

  7、棱台

  S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1-上底面积,S2-下底面积,S0-中截面积

  h-高,V=h(S1+S2+4S0)/6

  9、圆柱

  r-底半径,h-高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、直圆锥

  r-底半径h-高V=πr^2h/3

  12、圆台

  r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

  13、球

  r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台

  r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体

  R-环体半径D-环体直径r-环体截面半径d-环体截面直径

  V=2π2Rr2=π2Dd2/4

  17、桶状体

  D-桶腹直径d-桶底直径h-桶高

  V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

image.png  

  高考数学必考公式知识点

  1、适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

  x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

  2、函数的'周期性问题(记忆三个):

  (1)若f(x)=-f(x+k),则T=2k;

  (2)若f(x)=m/(x+k)(m不为0),则T=2k;

  (3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a、周期函数,

  周期必无限b、周期函数未必存在最小周期,如:常数函数。c、周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

  3、关于对称问题(无数人搞不懂的问题)总结如下:

  (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

  (2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称

  (3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

  4、函数奇偶性:

  (1)对于属于R上的奇函数有f(0)=0

  (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

  (3)奇偶性作用不大,一般用于选择填空

  高考数学必考知识点2

  一、集合与函数

  1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

  2、在应用条件时,易A忽略是空集的情况

  3、你会用补集的思想解决有关问题吗?

  4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

  5、你知道“否命题”与“命题的否定形式”的区别。

  6、求解与函数有关的问题易忽略定义域优先的原则。

  7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

  8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

  9、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

  10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法

  11、 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

  12、求函数的值域必须先求函数的定义域。

  13、如何应用函数的.单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)、这几种基本应用你掌握了吗?

  14、解对数函数问题时,你注意到真数与底数的限制条件了吗?

  (真数大于零,底数大于零且不等于1)字母底数还需讨论

  15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

  16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

  17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

image.png  

  二、不等式

  1、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”、

  2、绝对值不等式的解法及其几何意义是什么?

  3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

  4、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”、

  5、 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

  6、 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

  三、数列

  1、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

  2、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

  3、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

  4、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

  5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

  四、三角函数

  1、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

  2、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

  3、 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

  4、 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)

  5、 反正弦、反余弦、反正切函数的取值范围分别是

  6、你还记得某些特殊角的三角函数值吗?

  7、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

  高考数学必考知识点3

  立体几何初步

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

image.png  

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的'半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  明一个数列为等比数列、

【高考数学必考知识点】相关文章:

高考历史易错知识点09-24

迎战高考,做高考的“主人”10-08

新高考和普通高考的区别09-07

迎战高考,做高考的“主人”[集合]10-08

认识翡翠原石的知识点07-03

心理学知识点口诀03-13

高考生易心理疲劳影响高考09-08

高考生易心理疲劳影响高考[必备]10-01

成考政治必背知识点08-11